Biogenic carbon and anthropogenic pollutants combine to form a cooling haze over the southeastern United States

Allen H. Goldstein1, Charles D. Koven2, Colette L. Heald3, and Inez Y. Fung1

Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720

Contributed by Inez Y. Fung, April 15, 2009 (sent for review July 28, 2008)

Remote sensing data over North America document the ubiquity of secondary aerosols resulting from a combination of primary biogenic and anthropogenic emissions. The spatial and temporal distribution of aerosol optical thickness (AOT) over the southeastern United States cannot be explained by anthropogenic aerosols alone, but is consistent with the spatial distribution, seasonal distribution, and temperature dependence of natural biogenic volatile organic compound (BVOC) emissions. These patterns, together with observations of organic aerosol in this region being dominated by modern 14C and BVOC oxidation products with summer maxima, indicate nonfossil fuel origins and strongly suggest that the dominant summer AOT signal is caused by secondary aerosol formed from BVOC oxidation. A link between anthropogenic and biogenic emissions forming secondary aerosols that dominate the regional AOT is supported by reports of chemicals in aerosols formed by BVOC oxidation in a NOx- and sulfate-rich environment. Even though ground-based measurements from the IMPROVE network suggest higher sulfate than organic concentrations near the surface in this region, we infer that much of the secondary organic aerosol in the Southeast must occur above the surface layer, consistent with reported observations of the organic fraction of the total aerosol increasing with height and models of the expected vertical distribution of secondary organic aerosols from isoprene oxidation. The observed AOT is large enough in summer to provide regional cooling; thus we conclude that this secondary aerosol source is climatically relevant with significant potential for a regional negative climate feedback as BVOC emissions increase with temperature.

The importance of biogenic volatile organic compounds (BVOC) reacting with anthropogenic oxides of nitrogen (NOx) to cause high regional ozone concentrations during summer in the southeastern United States (SE U.S.) was first explained by Chameides et al. (1). This work fundamentally changed the understanding of regulatory approaches for controlling ozone pollution by focusing attention on the need to reduce NOx emissions. We present evidence that similar interactions control secondary aerosol in this region in summer, when concentrations are highest, suggesting that appropriate control strategies focused on the key anthropogenic factors will be required if effects on climate and visibility are to be reduced.

The largest uncertainties in projections of radiative forcing involve the direct effects of aerosols on the Earth’s radiation budget and the indirect effects through its influence on clouds (2). Atmospheric aerosols come from a combination of anthropogenic and natural sources and include both primary aerosols emitted directly to the atmosphere and secondary aerosols condensing from gaseous precursors. Aerosols above industrialized countries, such as the United States, until recently were generally assumed to be primarily of anthropogenic origin (e.g., ref. 3). Although climate models used in the fourth Intergovernmental Panel on Climate Change (IPCC) assessment include radiative forcing by a suite of anthropogenic aerosols, the radiatively significant aerosols are assumed to be sulfates from the oxidation of SO2 (2) with estimated source of 92–126 TgS year−1 (4).

Anthropogenic organics are generally estimated to provide a much smaller contribution to radiative forcing of the climate than sulfate aerosols (4). Anthropogenic primary organic aerosols are emitted by fossil fuel, biofuel, and agricultural burning. The IPCC climate models include black carbon emissions of 4.3–22 Tg year−1 and organic carbon (OC) emissions of 17–77 Tg year−1 (5). Current global aerosol models add a smaller contribution from secondary organic aerosols (SOA) of 12–70 TgC year−1 formed from oxidation of gas phase precursors based on extrapolation of precursor emissions and laboratory-based SOA yields (6). Many recent observations have changed this view. There is now substantial evidence that the atmospheric SOA source is significantly larger than current models estimate (7, 8), and a much larger global SOA source of 140–910 TgC year−1 has been proposed based on evaluation of the likely fate for VOCs emitted to the atmosphere, 90% of which are biogenic (9).

A large source of SOA should be observable with remote sensing techniques, particularly if it significantly impacts the atmospheric radiation budget. An aerosol source caused by BVOC oxidation should have a spatial pattern consistent with BVOC emissions, be highly seasonal with a maximum in summer, and follow the exponential dependence of BVOC emission with temperature. In this article, first we analyze the spatial and temporal distributions of column-integrated aerosol optical thickness (AOT) from satellite and ground-based remote sensing. Second, we provide evidence that the dominant seasonal signal in AOT over the SE U.S., and thus the summertime radiative forcing over this region, results from BVOC emissions reacting with anthropogenic pollution to form secondary aerosols. Third, we review available evidence for the spatial distribution of aerosol chemical components in the Eastern U.S., the relative importance of biogenic and anthropogenic contributions to the regional SOA in the SE U.S., and the interaction between biogenic and anthropogenic precursors in forming SOA. Finally, we estimate the radiative impacts of these aerosols for the region.

Observational Constraints

Remote sensing of AOT over dark land surfaces is possible from both satellite sensors and ground-based sunphotometers. These observations have been used to infer aerosol sources by exam-
ining the spatial patterns of aerosol plumes (e.g., ref. 3). Because the residence time of aerosols is a few days to a week, they are concentrated near source regions. We therefore seek to identify characteristics of aerosol sources by examining the aerosol distributions in the atmosphere.

We use satellite remote sensing data from the MultiAngle Imaging Spectro-Radiometer (MISR; 10) and the Moderate Resolution Imaging Radiometer (MODIS; 11) to examine patterns in the AOT. MISR infers AOT by using observations with 9 cameras at different angles and separates scattering by the aerosol from scattering by the land surface based on the angular distribution of the up-welling radiance phase function (12). By contrast, MODIS infers AOT by comparing up-welling radiance at multiple wavelengths (13). MISR is aboard the National Aeronautics and Space Administration (NASA) Terra satellite, and MODIS is aboard the NASA Terra and Aqua satellites with AM and PM sun-locked polar orbits, respectively. Here, we use monthly mean 550-nm MISR and MODIS AOT observations from March 2000 to February 2007.

These satellite instruments have repeat intervals of 16 days with overlapping swath widths, resulting in MISR effectively imaging the planet approximately once per week and MODIS effectively imaging the planet approximately once every 2 days. Neither of these instruments can see aerosols if clouds are present, so coverage frequency varies with location and season. Although there can be some topographic bias error in absolute values of MISR AOT for a given season, this cancels out in the difference between seasons, which is the primary signal of interest here. Because these satellite-based instruments offer limited ability to observe higher-frequency variations, and we want to exclude the possibility that seasonal variations in surface reflectance lead to the observed patterns of aerosol variability, we also use data from the AERONET network of sunphotometers (14) to look at higher-frequency relationships such as the daily correlation between AOT and temperature. The AERONET instruments, like the satellites, use remotely sensed data that integrate over the entire atmospheric column; unlike the satellites, they are stationary and upward-looking and thus not strongly influenced by changes in surface reflectance. We use AERONET data with the Version 2 Inversion Algorithm (15). There are several possible sources of error in the AOT observations, including uncertainties in aerosol single-scattering albedo, mixing state, and size distribution (16), particularly considering questions of mixtures between anthropogenic and biogenic aerosols. Nonetheless, the agreement in the region of interest among the three different observations is good (17).

Spatial Patterns in Remote Sensing and Relationship with Temperature

Measurements by the MISR instrument reveal high AOT over the industrial Midwest and northeastern (NE) U.S. throughout the year, with an annual mean of 0.18 (Fig. 1A). Similarly high AOT (annual mean of 0.19) is observed over the SE U.S.. The AOT is higher in the summer than in the winter, and the seasonality (summer minus winter) is largest, ~0.18, over the SE U.S. (Fig. 1B). The same spatial pattern of seasonality is observed by the MODIS instrument (Fig. 1C). The time series of AOT shows a clear, repeatable pattern of variations in the three instrument records: MISR and MODIS averaged over the SE region, and the ground-based AERONET station at Walker Branch, TN (Fig. 1D). We define the NE U.S. as 70–90°W and 37.5–45°N, and SE U.S. as 70–90°W and 30–37.5°N.

High-summertime AOT over the SE U.S. is not consistent with dominantly sulfate or anthropogenic carbon aerosols for several reasons. First, the geographic distribution of wet sulfate deposition (National Acid Deposition Program, available at http://nadp.sws.uiuc.edu) and sulfate concentration in aerosols (19) match the distribution of anthropogenic SO2 emission, with maxima in the industrial Midwest and NE U.S. (Fig. 2A). Second, the observed AOT changes seasonally by a factor of 6–7 (summer(JJA)/winter(DJF), AERONET Walker Branch) whereas the sulfate changes seasonally by a smaller factor (~3) as observed in the eastern U.S. by the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. The IMPROVE sulfate seasonality is generally attributed to faster summertime oxidation of SO2 through aqueous reactions with
peroxides (20). The main source of peroxides is isoprene oxidation in the SE U.S. (21), so we infer that the sulfate seasonality must be linked to BVOC emission and oxidation, but this seasonality is still insufficient to explain the observed AOT changes. Third, the observed pattern of AOT is also inconsistent with the spatial distribution of anthropogenic SOA precursor emissions, which are highest in the Northeast (Fig. 2B).

We hypothesize that the seasonal AOT pattern observed over the SE U.S. is driven by SOA from BVOC emissions. The seasonality of AOT and the spatial pattern of the AOT seasonal amplitude match those from BVOC emissions from forests in the SE U.S. (Fig. 2C). BVOC emissions for this region are primarily isoprene (81%) and monoterpenes (19%) and were calculated within the Community Land Model (CLM3) following Guenther et al. (22, 23) algorithms as described by Heald et al. (24). Current models of SOA production from isoprene and monoterpane oxidation based on laboratory chamber experiments use yields of 1–3% (25) and 2–23% (26), respectively. Current models do show that the large seasonal biogenic emission source in the SE U.S. leads to enhanced SOA over this region, qualitatively matching the spatial AOT signature we observe (27, 28); however, the SOA produced in these models is too small to dominate the total AOT signal, and therefore likely underestimates the magnitude of this source.

Formaldehyde and CO are both high-yield oxidation products of isoprene. Formaldehyde has been observed from the GOME and OMI instruments in space and used to confirm the large isoprene emission source in the SE U.S. (29, 30). Modeling of the spatial distribution of CO sources demonstrates that in summer BVOC oxidation is the dominant source of CO over the SE U.S. (31). These spatial and temporal patterns of observed formaldehyde, modeled CO from BVOC oxidation, and modeled isoprene emissions all match the AOT shown here, strengthening our argument for an observable link between BVOC oxidation and AOT.

To test our hypothesis further, we examined the relationship between the time series of AOT observed at the rural Walker Branch TN AERONET site and of surface temperature averaged over the SE region from NCEP reanalysis (32). Over all seasons, a high positive correlation ($R^2 = 0.55$) is found (Fig. 3), and the best-fit curve has an exponential temperature dependence ($\gamma = \exp(\beta(T - T_0))$, where β is an empirical coefficient of exponential dependence and T_0 is the base temperature of standard conditions (303 K)). The best-fit curve shown above ($R^2 = 0.55$) has a β of 0.11, in good agreement with BVOC emission observations.

![Fig. 2. Emission maps for the United States. (A) Annual total anthropogenic SO2 emission. (B) Annual anthropogenic VOC emissions. (C) Annual total biogenic emissions of isoprene and monoterpenes. Anthropogenic Emissions are from U.S. Environmental Protection Agency National Emissions Inventory version 3 (NEI-99) (18), regredded from 4 km to 1° resolution.](image)

![Fig. 3. Comparison of Walker Branch AERONET AOT (440 nm) vs. corresponding NCEP SE mean surface temperature reconstructions. Curve is exponential following the temperature dependence of biogenic VOC emission (28): $\gamma = \exp(\beta(T - T_0))$, where β is an empirical coefficient of exponential dependence and T_0 is the base temperature of standard conditions (303 K). The best-fit curve shown above ($R^2 = 0.55$) has a β of 0.11, in good agreement with BVOC emission observations.](image)
both the summer (JJA, $R^2 = 0.19$) and winter (DJF, $R^2 = 0.25$). We repeated this analysis for all other U.S. AERONET sites that had at least 2 years of data and found the strength of the temperature dependence of AOT throughout the eastern U.S. has a spatial dimension similar to the BVOC emissions (Fig. 4); this suggests that the biogenic signal can be observed throughout the eastern U.S. but that its relative importance to the total aerosol thickness decreases away from the rural SE U.S. peak BVOC source region.

We also compared the daily AERONET observations against NCEP relative humidity to test whether the observed seasonal variation in AOT could be caused solely by hygroscopic growth of aerosols. For the Walker Branch location, there is significant correlation between aerosol and humidity over all seasons, although the fraction of variance explained ($R^2 = 0.17$) is less than half that explained by the temperature relationship. When individual seasons are considered in isolation, there is not a significant relationship between humidity and aerosol in the summer ($R^2 = 0.01$) when the slope of the temperature–aerosol curve is steepest and thus temperature can play a strong role; whereas in the winter, when we expect temperature to be a relatively weak control, the aerosol–humidity correlation is highest ($R^2 = 0.24$). Thus, although there does seem to be a humidity component to the AOT observations, as expected, it cannot be driving the pattern we observe here.

Confirming that remotely sensed AOT is consistent with the mass expected from these precursors is currently difficult because of uncertainties in the size distribution, vertical profile, hygroscopic growth, and density of organic aerosols. However, the strong seasonal signal in AOT over the SE U.S. does suggest a larger SOA burden than previously simulated.

We hypothesized that the summertime maximum in AOT over the SE U.S. is dominated by 5 arising from biogenic VOC oxidation in the presence of anthropogenic pollutants. The spatial pattern of aerosol seasonality supports this hypothesis, as does the functional relationship between daily aerosol and temperature.

Evidence of Aerosol Chemical Composition in the Eastern U.S.

Multiple studies have reported findings consistent with our hypothesis but have not advanced the hypothesis themselves. Organics contribute a substantial fraction of aerosols observed downwind of the densely populated and highly industrialized eastern U.S. (33) and over much broader regions including urban, rural, and remote environments, as shown by aerosol mass spectrometer (AMS) measurements (34). The average spatial distributions of sulfate, nitrate, and carbon in aerosol in the eastern U.S. differ significantly. The maximum carbon occurs in the SE U.S. (e.g., Georgia), whereas the maxima sulfate and nitrate occur much further north (e.g., Ohio) based on rural IMPROVE network and urban Speciation Trends Network (STN) surface observations (19). The organic aerosol in the SE U.S. is mostly secondary, with radiocarbon (14C) measurements indicating 70% or more of the carbon is modern (rather than fossil) in rural locations and therefore likely of biogenic origin (35, 36).

Further evidence for the presence of BVOC oxidation products in SOA in this region is provided by site-specific analysis of the organic chemical composition of PM$_{2.5}$ (37, 38). At Research Triangle Park, NC, in summer 2003, ambient PM$_{2.5}$ consisted on average of 41% organic matter, 2% elemental carbon, 12% ammonium, and 37% sulfate, with higher organic and PM$_{2.5}$ concentrations under acidic conditions. An organic tracer-based method was used to estimate the contributions of SOA from biogenic isoprene and terpenes, anthropogenic precursors, and biomass burning to total OC. The relative contributions were found to be highly seasonal, with SOA from biomass burning accounting for >50% of OC in winter when SOA contributions were low, and contributions from BVOC accounting for >50% of OC in July and August, with twice as much total OC in July–August compared with January–February.

Forty distinct polar organic species originating from terpene oxidation were identified, comprising 7.2% on average of the total in fine aerosol organic mass, on filters collected in the SE U.S. in June 2004, at three sites in the Southeastern Aerosol Research and Characterization (SEARCH) network (Jefferson Street, Atlanta, GA; Birmingham, AL; Centreville, AL) (39). Measurements of 13C in secondary organic aerosol over a full annual cycle at the same sites demonstrate that fossil C contributions are higher at urban sites and do not change much seasonally, whereas the modern C contribution is similar at all sites with much higher concentrations in spring and summer, consistent with a dominant summertime contribution from BVOC oxidation distributed over a broad region (40). In summer, isoprene-derived SOA correlated positively with the modern SOA, demonstrating a large contribution to total SOA in summer.

In contrast, surface-based filter measurements from the IMPROVE network indicate low fractions of organic aerosol in the SE U.S. However, MISR, MODIS, and AERONET all detect substantially more aerosol in the atmospheric column over the SE relative to the NE U.S, in summer than the IMPROVE network detects at the ground (41). We infer from this discrepancy that much of the organic secondary addition to the aerosol in the southeast must occur above the surface layer. This is consistent with in situ aircraft data (42–44), where the organic fraction of the total aerosol has been shown to increase with height, even though surface sulfate concentrations were much larger than surface organic concentrations. Similarly, Kleinman et al. (45) show that aloft outside of urban regions throughout the eastern U.S., the organic fraction dominates the total aerosol mass with average concentrations of 6.5 and 11 μg m$^{-3}$, respectively. Consistent with photochemical production after convective transport of BVOC precursors are vertical profile observations of peroxydes in this region, with maxima between 1 and 4 km (21). It therefore seems likely that the increase in organic/sulfate ratio with altitude results at least partially from heterogeneous chemical reactions adding BVOC oxidation products to the preexisting aerosol and is also consistent with gas phase semivolatile VOC oxidation products partitioning onto aerosol with cooler temperatures aloft. Modeling studies of SOA production from isoprene oxidation over the U.S. predict a strong vertical profile with \approx10% of SOA simulated to occur in the surface layer (0–35 m), \approx80% occurring in the planetary boundary layer (0–2.85 km), and \approx10% occurring in the free troposphere (2.85–9 km) (46), whereas the maximum contribu-
tion from terpene oxidation to SOA maximizes at lower altitudes (24). New observations of aerosol chemical and optical properties as a function of altitude in the summer and winter will be required to confirm definitely the source of this seasonally high AOT over the SE US.

Evidence for Chemical Interactions Between Biogenic and Anthropogenic Precursors Forming SOA

Recent evidence suggests that there are chemical interactions between anthropogenic and biogenic aerosol precursors that are important in the formation of secondary aerosols in the SE U.S. Gao et al. (39) used chemical and correlation analyses to suggest that the polar organics they detected originated from terpene oxidation in the presence of anthropogenic NOx and SO2; and that the three inland SE U.S. SEARCH sites in Georgia and Alabama had a consistent distribution of chemical composition, whereas the terpene oxidation products were not found to be as prominent at the Gulf of Mexico, concluding that a biogenic SOA source is likely important in the formation of secondary aerosols from isoprene and terpene oxidation based on experiments with both OH (daytime) and NO3 (nighttime) as oxidants. In laboratory experiments, the rate of SOA formation increased with the concentration of sulfuric acid seed aerosols, and the chemical nature of SOA formed from terpenoid compound oxidation depends strongly on NOx concentrations. Furthermore, they observed the same and similar compounds in ambient aerosols in the SE U.S. and quantified that organosulfates account for up to 30% of the organic aerosol mass in K-puszta, Hungary. Similar to these observations, secondary aerosol growth in pollution plumes enhanced in both SO2 and VOC downwind of Houston, TX, was observed to exceed greatly that expected from SO2 or VOC alone, suggesting that the presence of SO2 was key to the growth of secondary organic aerosols (50). The compounds identified and the radiocarbon data for this region, and the mechanisms proposed by Surratt et al. provide a potentially critical link between many recent observations, such as that aerosol in the eastern U.S. have a large organic component (42), that heterogeneous atmospheric aerosol production can occur by acid-catalyzed particle phase reactions (51), that the transformation of BVOC to SOA may be mediated by the presence of anthropogenic pollution based on correlations between SOA and anthropogenic pollutants (36), and the spatial and temperature-dependent observations of AOT presented here. These findings together point to a large source of SOA from BVOC oxidation, especially in the presence of pollution.

Radiative Impacts

The most recent IPCC assessment estimates that all aerosols contribute a direct radiative effect of −5.4 ± 0.9 W m−2 in the global mean and that anthropogenic sulfate contributes a global annual mean negative radiative forcing of −0.4 W m−2, which can be compared with the positive forcing from greenhouse gas emissions (+2.6 W m−2). We estimate top of the atmosphere (TOA) radiative change (ΔF) for optically thin atmosphere as (52):

\[ΔF = -DS_0T_{am}(1-A_{s})ωβωAOT \left(1 - R_s \right) \left(\frac{2R_s}{\beta} \left(\frac{1}{ω} - 1 \right) \right) \]

where D_s, fractional day length = 1/2; S_0, solar constant = 1.370 W/m²; T_{am}, atmospheric transmission = 0.76; A_s, fractional cloud amount = 0.6; $ω$, single scattering albedo = 0.972 (53); $β$, up-scatter fraction = 0.21; R_s, surface reflectance = 0.15. All other values were taken from ref. 52. The seasonal change in AOT (0.18, based on the MISR AOT summer minus winter difference) observed over the SE U.S. implies a regional direct clear-sky radiative effect of −3.9 W m−2 in summer, comparable with the regional sulfate radiative forcing in the NE U.S.

The −3.9 W m−2 greater radiative cooling in summer cannot be treated strictly as radiative forcing, i.e., an anthropogenic forcing, because the aerosols are mainly from the oxidation of BVOC emitted from forests. However, as shown above, the AOT includes aerosol contributions resulting from the interaction between natural BVOC emissions and anthropogenic pollution and therefore an additional radiative forcing that may be modulated by anthropogenic activities and that has not been considered. If there are systematic seasonal variations, e.g., in surface albedo, cloud cover, or aerosol microphysical properties, these could cause uncertainty in our radiative effect calculation. It is premature to compare our estimate directly with IPCC estimates of radiative forcing by aerosols because the regional and temporal extents of the AOT from BVOC–pollution interactions remain to be established. We note that the current generation of models underestimates the seasonality of aerosols in this region (54) and thus may be overestimating radiative forcing by direct anthropogenic aerosol source relative to a biogenic or combined source.

The observed seasonal temperature dependence of the AOT is also reflected in interannual covariation between mean summertime regional temperature and aerosol (Fig. 5). Although there are relatively few years of satellite aerosol measurement to establish a strong relationship, the observations spanning the period 2000–2005 are consistent with the idea that warm summers lead to higher BVOC emission. This relationship could also possibly be related to more power consumption for air conditioners causing increased NOx emissions, or to annually varying transport patterns, but there is clearly a relationship of AOT varying interannually with temperature. Thus, we predict higher regional summertime aerosol levels in the future and a regional negative, albeit small, feedback on warming and a less rapid increase in BVOC emissions and AOT.

Conclusions

AOT over the SE U.S. has a strong seasonal cycle of 0.18 corresponding to a stronger radiative impact (−3.9 W m−2 cooling) in summer than in winter. The spatial pattern of this AOT seasonality matches BVOC emissions and does not match the dominant spatial patterns of anthropogenic emissions. Temporal variations in AOT in the region also follow a functional relationship with temperature that matches BVOC emissions dependence on a daily time scale. Together, these patterns
suggest that BVOC emissions oxidizing to form SOA, likely modulated by anthropogenic emissions, are responsible for a large fraction of the total column aerosol load in the region. The recently reported mechanism of organosulfate formation from heterolysis of oxidation of BVOC and the presence of NOx and acidic seed aerosols provides another likely link between these observations, with an additional pathway for the formation of these secondary aerosols.

Seasonal and interannual variations of aerosol over the region demonstrate that in the presence of current anthropogenic emissions, the temperature dependence of BVOC emission leads to SOA increasing rapidly with temperature, thus SOA appears to act as a negative climate feedback regionally.

Radiative forcing as the term is used by the IPCC is anthropogenic in origin. Because biogenic SOA is generally defined as natural aerosol, climate and aerosol models assessing radiative forcing neglect this biogenic SOA. Multiple studies discussed here are consistent with our interpretation that anthropogenic emissions exert control over the amount of biogenic SOA produced, and therefore it may be necessary to include organic aerosol forcing as a radiative forcing in climate models. Assuming that the Earth’s climate warms in the future as projected by IPCC (2), BVOC emissions will also increase as will SOA unless the anthropogenic emissions are decreased.

If BVOC emissions are truly transformed to SOA dominantly through reactions with regional anthropogenic emissions as suggested, efforts to reduce aerosol in this region must focus on controlling anthropogenic NOx, SO2, and primary OC emissions, similar to the regulatory measures that regional ozone and acid deposition problems have required in the past. Managing regional haze and visibility in the SE U.S. and modeling air quality interactions with future climate will require improved quantitative understanding of the photochemical processes controlling BVOC and anthropogenic emissions reacting to form SOA.

ACKNOWLEDGMENTS: We thank the AERONET, MISR, and MODIS teams for use of their data. C. D. K. was supported by a National Aeronautics and Space Administration Earth System Science Fellowship NNG04GlQ7H, and C. L. H. was supported by a National Oceanic and Atmospheric Administration Climate and Global Change Postdoctoral Fellowship.